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Abstract

A number of authors have previously used group representation theory to block-diagonalise the sti�ness matrix of
a symmetric structure. This paper describes how similar techniques can be used to block-diagonalise the equilibrium

matrix of a symmetric structure. This is shown to provide useful insight into the static and kinematic response of
such systems. In particular, it simpli®es ®nding and classifying states of self-stress and mechanisms, as well as
reducing the computational e�ort required for a Force Method analysis. # 1999 Elsevier Science Ltd. All rights
reserved.

1. Introduction

Many authors have applied group representation theory to the analysis of symmetric structures. This
work has usually been based on the Sti�ness Method of structural analysis, and hence these methods
essentially provide a way to block-diagonalise a sti�ness matrix into submatrix blocks corresponding to
particular symmetry properties of the structure. Typical examples of this technique include Zhong and
Qui (1983), Dinkevich (1991), Healey and Treacy (1991), ZlokovicÂ (1992); this large body of work has
recently been reviewed and explained in Kangwai et al. (1999).

Very few authors, however, have considered the impact of group representation theory on the
equilibrium relationships between external forces and internal stress resultants for a symmetric structure,
or, equivalently, the compatibility relationships between external joint displacements, and internal
deformations. It is precisely this impact that the current paper addresses by showing the simpli®cation
that group representation theory can bring to the linearised equilibrium or compatibility relationships
for a structure. Essentially the paper shows how an equilibrium matrix can be block-diagonalised into
submatrix blocks which relate external forces and internal stress resultants with particular symmetry
properties. An important advantage of this method is that all the work done on the implications of the
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linear algebra of equilibrium matrices, e.g. Strang (1986, chap. 2), Calladine (1978), Pellegrino and
Calladine (1986), Pellegrino (1993) is equally applicable to these submatrix blocks. The method also
allows considerable simpli®cations to be made in a Force Method analysis of a symmetric structure.

A key feature of the work described in this paper is ®nding an internal symmetry-adapted coordinate
system for a structure, suitable for expressing the stress resultants. This has many similarities to previous
work where inter-atomic distances and angles between chemical bonds have been used to de®ne an
internal coordinate system for a symmetric molecule, see, for example, Wilson et al. (1955).

The work described in this paper builds on the mathematical foundations described by Bossavit
(1993). Bossavit showed that group representation theory could be applied to equilibrium and
compatibility relationships for symmetric structures (note however, that Bossavit's compatibility matrix
might be better described as an incompatibility matrix, whose row space corresponds to the left-
nullspace of the compatibility matrix used in this paper). The current paper considers many of the
practical implications of this mathematical foundation. In particular, it puts it into the context of earlier
work on the linear algebra of the equilibrium matrix, showing the implications for states of self stress
and mechanisms in a structure, and the application to Force Method analysis.

ZlokovicÂ (1989) has previously considered the e�ect of symmetry on a Force (or Flexibility) Method
analysis of a structure, but used a quite di�erent approach to the one in this paper. In particular, the
e�ect of symmetry is not considered directly on equilibrium relationships; rather a statically
indeterminate structure is made determinate by sets of fully symmetric `cuts' in the structure, with
equilibrium being a subsequent step to this. This approach would have di�culties when applied to, for
example, the example structures in this paper, where there does not exist a fully symmetric set of `cuts'
that will make the structures determinate. Also, ZlokovicÂ 's approach is based on the characters of
irreducible representations, rather than the representations themselves, and so is not able directly to split
subspaces corresponding to more-than-one dimensional irreducible representations, although this is
sometimes recti®ed by ad-hoc methods.

The layout of this paper is as follows. Section 2 outlines the equilibrium, compatibility and ¯exibility
relationships required for the static analysis of structures. Section 3 shows how symmetry-adapted
coordinate systems can be found for both internal and external vector spaces. Section 4 shows that by
using the symmetry subspaces to provide symmetry-adapted coordinate systems, the equilibrium matrix
for any symmetric structure is block-diagonalised into submatrix blocks with particular symmetry
properties. Section 5 describes how block-diagonalising the equilibrium matrix facilitates the
identi®cation of states of self-stress and mechanisms present in the structure, and shows the
simpli®cation that is possible for a Force Method analysis of a structure. Section 6 provides a detailed
example, where the equilibrium matrix of a tensegrity dome, originally analysed by Pellegrino (1992), is
block-diagonalised to simplify the identi®cation of states of self-stress and mechanisms in the structure.
Section 7 concludes the paper.

2. Equilibrium, compatibility and ¯exibility matrices

Traditional structural analysis requires three principles to be satis®ed; that internal forces are in
equilibrium with the applied load, that any internal deformation is compatible with external
displacements, and that internal forces and displacements are related by a material law.

For small perturbations around the initial con®guration of a structure, these relationships can be
linearised as three matrix relationships.

The system of static equilibrium equations for a general structure is given by:
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Hf � p �1�
where H is the equilibrium matrix, f is the internal force vector, p is the external load vector.

The system of kinematic compatibility equations is given by:

Cd � e �2�
where C is the compatibility matrix, d is the external displacement vector, e is the internal deformation
vector.

The stress±strain relationship is given by:

Rf � e �3�
where R is the ¯exibility matrix.

The solution of a problem in structural analysis requires the simultaneous solution of eqns (1)±(3).
Commonly, using the Sti�ness Method of structural analysis, the internal forces are condensed out, and
the three sets of equations are combined to form a single sti�ness relationship. However, in the Force
Method of structural analysis, all three equations are used explicitly.

It can easily be shown by a virtual work argument that C=HT (McGuire and Gallagher, 1979). Due
to this static-kinematic duality, it is possible to analyse the equilibrium equation of a structure in order
to identify both the states of self-stress present in a statically indeterminate structure and also the
presence of inextensional mechanisms where rigid body motion is possible for all or part of a
kinematically indeterminate structure (Pellegrino and Calladine, 1986).

The examples in this paper are restricted to the static analysis of pin-jointed structures. This is to
simplify the matrices involved in the calculations, although the techniques used are equally suited to the
analysis of more general structures.

3. Symmetry-adapted coordinate systems

This section described how the application of group representation theory can be used to ®nd
symmetry-adapted coordinate systems for a structure. These symmetry-adapted coordinate systems
provide a basis for vector symmetry subspaces, each of which have particular symmetry properties of

Fig. 1. Pin-jointed structure in 2-D space with C3u symmetry. All joints are pinned.
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the structure. This technique is well-known in structural mechanics when it is applied to an external
coordinate system, suitable for representing e.g. applied loads, or joint displacements, and so is not
presented in detail in this paper. Finding a symmetry-adapted coordinate system for an internal
coordinate system that may be used for representing e.g. stress resultants, or bar deformation, however,
is a novel technique for structural mechanics, although it is commonly applied in Chemistry in the
analysis of symmetric molecules. Thus, this paper described how to ®nd a symmetry adapted coordinate
system in more detail.

The method of ®nding symmetry-adapted coordinate systems will be outlined with reference to the
simple example structure shown in Fig. 1. This 2-D structure has C3v symmetry, as it is unchanged by
six symmetry operations: the identity, symmetry operation E; rotation by 120 or 2408 about the origin
O, symmetry operations C3, C

2
3; re¯ection in line a, b or c, symmetry operations sa, sb or sc. A set of

irreducible representations Gm are given in Table 1 for C3v; these irreducible representations provide the
key to ®nding symmetry adapted coordinate systems, and may be found in books of group theory
tables, e.g. Altmann and Herzig (1994).

3.1. Symmetry-adapted external coordinate system

In Fig. 2 a coordinate system has been attached to the example structure that is suitable for

Table 1

Irreducible representations of symmetry group C3v

C3v E C3 C2
3 sa sb sc

G�A1� 1 1 1 1 1 1

G�A2� 1 1 1 ÿ1 ÿ1 ÿ1

G�E �
1 0

0 1

" #
ÿ1=2 ÿ ���

3
p
=2���

3
p
=2 ÿ1=2

" #
ÿ1=2 ���

3
p
=2

ÿ ���
3
p
=2 ÿ1=2

" #
1 0

0 ÿ1

" #
ÿ1=2 ÿ ���

3
p
=2

ÿ ���
3
p
=2 1=2

" #
ÿ1=2 ���

3
p
=2���

3
p
=2 1=2

" #

Fig. 2. A Cartesian coordinate system for the external load and displacement vector space Vp.
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representing both load vectors p, and displacement vectors d. We use the symbol Vp to denote the 6-D
vector space occupied by these vectors.

As has been shown by e.g. Kangwai et al. (1999) or Healey and Treacy (1991), this vector space can
be split into symmetry subspaces which each correspond to a row of one of the irreducible
representations of the group. For the example structure, there are four symmetry subspaces; the ®rst two
correspond to the two 1-D irreducible matrix representations, and the second two correspond to the two
rows of the 2-D irreducible matrix representation:

Vp �
�
V�A1 �

p j V�A2 �
p j V�E�1p j V�E�2p

�
�4�

The symmetry adapted basis of the external symmetry subspaces are shown in Fig. 3. Each of the
symmetry subspaces corresponds to a particular type of symmetry of the example structure. Any vector
in the symmetry subspace V�A1�

p is left unchanged by any symmetry operation of the symmetry group
C3v, which explains why the irreducible representation G�A1� is [1] for any symmetry operation. Any
vector in the symmetry subspace V�A2�

p is left unchanged by any rotation, but is reversed by any
re¯ection, and so the irreducible representation G�A2� is [1] for a rotation, but [ÿ1] for a re¯ection. Any
vector in V�E �1p has only re¯ective symmetry in the plane a, while any vector in V�E �2p has only anti-

Fig. 3. External load and displacement vector symmetry subspaces: (a) V�A1�
p ; (b) V�A2�

p ; (c) V�E �1p ; (d) V�E �2p . aÿ g are arbitrary

constants.
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symmetry in the plane a. It can be seen why G�E � is a 2-D irreducible representation, as the e�ect of
symmetry operations on this symmetry subspaces is more complex, with a coupling between the basis
vectors.

V�E �1p and V�E �2p contain vectors which are symmetric and anti-symmetric in plane a because of the
particular choice for the 2-D irreducible representation G�E � that we made. While the 1-D irreducible
representations are unique, there is a choice of vector basis for any 2-D irreducible representation, and a
di�erent choice for G�E � could, for instance, have made vectors in V�E �1p and V�E �2p symmetric and anti-
symmetric in a di�erent plane.

The matrix Vp gives the symmetry adapted basis in terms of the original Cartesian coordinate system

Vp �

2666666666664

1=
�����
12
p

ÿ1=2
ÿ1= ���

3
p

0

1=
�����
12
p

1=2

�����������������

1=2

1=
�����
12
p

0

ÿ1= ���
3
p

ÿ1=2
1=

�����
12
p

�����������������

����������
5=12
p

0

1=
�����
20
p

1=
���
5
p

1=
�����
15
p ÿ ��������

3=5
p

0 0����������
5=12
p

0

ÿ1= �����
20
p ÿ1= ���

5
p

�����������������

ÿ1= �����
20
p ÿ1= ���

5
p

ÿ ����������
3=20
p ����������

4=15
p

0 0

ÿ ��������
3=5
p ÿ1= �����

15
p

1=
�����
20
p

1=
���
5
p

ÿ ����������
3=20
p ����������

4=15
p

3777777777775
�5�

3.2. Symmetry-adapted internal coordinate system

It is also possible to ®nd a symmetry adapted coordinate system that is suitable for representing
quantities such as internal bar forces or extensions. As this technique is not well-known for structural
mechanics, the techniques used to ®nd this symmetry adapted coordinate system will be presented more
carefully, again with particular reference to the example structure.

Fig. 4 shows a `natural' coordinate system for both the bar-force vectors f, and bar-elongation vectors
e in the example structure. This coordinate system is necessarily restricted by the con®guration of the

Fig. 4. A natural coordinate system for the internal bar-force and bar-elongation vector space Vf .
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structure. We use the symbol Vf to denote the vector space de®ned by all possible internal bar-forces
and bar-elongations. This vector space can also be split into symmetry subspaces.

The ®rst step in ®nding a symmetry-adapted coordinate system is to write a `reducible' representation
F for each symmetry operation, as it is represented in the original coordinate system. For the natural
internal coordinate system of the example structure, this representation is given in Table 2; each of the
representation matrices for the internal coordinate system of a pin-jointed structure will be a
permutation matrix, as each symmetry operation will simply shu�e the numbering of the bars.

For the matrix representation F, which operates on the vector space Vf of a general structure, any
standard text on group representation theory, or the papers described in the Introduction, will show
that each of the symmetry subspaces V

�m�i
f are given by the column space of the projection operator

matrix:

O
�m�
ij �

X
F

G�m�i,j F �6�

where the irreducible matrix representations of the symmetry group C3v are given in Table 1 and the
summation is over the matrix representation F given in Table 2. For example, the symmetry subspace
V
�A1�
f is given by the column space of:

O
�A1 �
11 �

X
F

G�A1 �
1,1 F

�
h
1� F�E� � 1� F�C3 � � 1� F

ÿ
C2

3

�� 1� F�sa� � 1� F�sb� � 1� F�sc �
i

Table 2

Reducible matrix representation F of symmetry group C3v

F�E� �

26666664
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

37777775 F�sa � �

26666664
0 0 0 0 1 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 1 0 0

37777775

F�C3 � �

26666664
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

37777775 F�sb � �

26666664
0 0 1 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 0

37777775

F
ÿ
C2

3

� �
26666664
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0

37777775 F�sc � �

26666664
1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1

37777775
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�

2666666666664
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���
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0 1=
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���
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���
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p
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���
3
p
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���
3
p
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���
3
p

0 1=
���
3
p

0 1=
���
3
p

0

0 1=
���
3
p

0 1=
���
3
p

0 1=
���
3
p

1=
���
3
p

0 1=
���
3
p

0 1=
���
3
p

0

0 1=
���
3
p

0 1=
���
3
p

0 1=
���
3
p

3777777777775
�7�

A suitable vector basis V
�A1�
f for the symmetry subspace V

�A1�
f , can then be chosen:

V
�A1 �
f � basis for column space of O

�A1 �
11 �

2666666666664

1=
���
3
p

0

0 1=
���
3
p

1=
���
3
p

0

0 1=
���
3
p

1=
���
3
p

0

0 1=
���
3
p

3777777777775
�8�

A similar calculation is carried out to ®nd the vector basis for the symmetry subspace V
�A2�
f :

O
�A2 �
11 �

X
F

G�A2 �
1,1 F

�
h
1� F�E� � 1� F�C3 � � 1� F

ÿ
C2

3

�ÿ 1� F�sa� ÿ 1� F�sb� ÿ 1� F�sc �
i

�

26666664
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

37777775 �9�

The symmetry subspace V
�A2�
f is given by the column space of O

�A2�
11 and hence is a zero space, the

signi®cance of which will be explained later.
The vector bases for the two remaining symmetry subspaces V

�E �1
f and V

�E �2
f are found in a similar

way, ®nally giving a new symmetry-adapted basis for the bar-force and bar-elongation vector space Vf :

Vf �
h
V
�A1 �
f

���V�A2 �
f

���V�E�1f

���V�E�2f

i
�10�
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Vf �

2666666666664

1=
���
3
p

0

0 1=
���
3
p

1=
���
3
p

0

0 1=
���
3
p

1=
���
3
p

0

0 1=
���
3
p

�����������������

�����������������

0 1=
���
6
p

ÿ ��������
2=3
p

0

0 ÿ ��������
2=3
p

1=
���
6
p

0

0 1=
���
6
p

1=
���
6
p

0

�����������������

0 ÿ1= ���
2
p

0 0

0 0

ÿ1= ���
2
p

0

0 1=
���
2
p

1=
���
2
p

0

3777777777775
�11�

The basis vectors of the four symmetry subspaces V
�m�i
f , are shown in Fig. 5. We can see the symmetry

properties of each bar-force and bar-elongation vector symmetry subspace V
�m�i
f are identical to the

corresponding load and displacement vector symmetry subspace V�m�ip shown in Fig. 3. In particular, we
found that the second symmetry subspace V

�A2�
f was a zero space. That is, there are no bar-force or bar-

elongation vectors which have only the rotational symmetry of the example structure. In this case any
bar-force or bar-elongation vector left unchanged by the rotation operations, will also be left unchanged
by the re¯ection operations and hence belong to the ®rst symmetry subspace V

�A1�
f .

Thus, although the corresponding symmetry subspaces V�m�ip and V
�m�i
f have identical symmetry

properties, it is also clear that the corresponding vector bases may well have di�erent dimensions.

Fig. 5. Internal bar-force and bar-elongation vector symmetry subspaces: (a) V
�A1�
f ; (b) V

�A2�
f ; (c) V

�E �1
f ; (d) V

�E �2
f . a±f are arbitrary

constants.
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4. Block-diagonal form of the equilibrium, compatibility and ¯exibility matrices

Using group representation theory to exploit the full symmetry of the example structure, it has been
possible to decompose the two vector spaces Vp and Vf , into symmetry subspaces V�m�ip and V

�m�i
f . Each

of these symmetry subspaces corresponds to a di�erent type of symmetry.
In Kangwai et al. (1999), symmetry arguments were used to show that load vectors with the symmetry

properties of a particular symmetry subspace V�m�ip , would induce displacement vectors with the same
symmetry properties and hence from the same symmetry subspace V�m�ip . Although the induced bar-force
and bar-elongation vectors occupy a di�erent vector space Vf , to that of the load and displacement
vectors, namely Vp, these symmetry arguments can be extended to the equilibrium matrix.

In a stable linear system, any induced bar-force and bar-elongation vectors will have the same
symmetry properties as the applied load vector. Hence, any load vector with the particular symmetry
properties of symmetry subspace V�m�ip , will induce bar-force and bar-elongation vectors from the
corresponding symmetry subspace V

�m�i
f , which has the same symmetry properties. Therefore, the

equilibrium matrix H can be block-diagonalised into independent submatrix blocks, each operating on a
pair of corresponding symmetry subspaces V�m�ip and V

�m�i
f . The compatibility matrix C and ¯exibility

matrix R can also be block-diagonalised in a similar way.
The key to the block-diagonalisation is to de®ne the load vectors Äp in the symmetry-adapted vector

basis Vp, and the bar-force vectors Äf in the symmetry-adapted vector basis Vf (a0 is used for symmetry-
adapted systems). These can be transformed into equivalent load and bar-force vectors p and f in the
original coordinate systems, by the following transformations:

p � Vp Äp �12�

f � Vf
Äf �13�

Substituting eqns (12) and (13) into the equilibrium equation Hf=p:

HVf
Äf � Vp Äp �14�

Multiplying both sides of eqn (14) by Vp
T:�

VT
p HVf

�
Äf � Äp �15�

The block-diagonalised equilibrium matrix is therefore:

ÄH �
�

VT
p HVf

�
�16�

and the symmetry-adapted equilibrium equation is now:

ÄH Äf � Äp �17�
In a similar way the block-diagonalised compatibility and ¯exibility matrices are:

ÄC � ÿVT
f CVp

� �18�

ÄR � ÿVT
f RVf

� �19�
For the example structure shown in Fig. 1, the (6 � 6) equilibrium matrix H, written in the original
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load and bar-force vector coordinate systems, is given by:

H �

2666666666664

ÿ ���
3
p
=2 0 0 1=2 0 0

1=2 0 1 ÿ ���
3
p
=2 0 0���

3
p
=2 ÿ1 0 0

���
3
p
=2 0

ÿ1=2 0 0 0 1=2 0

0 0 0 0 ÿ ���
3
p
=2 1=2

0 0 ÿ1 0 ÿ1=2 ���
3
p
=2

3777777777775
�20�

Substituting eqns (11), (20) and (5) into eqn (16), the block-diagonalised equilibrium matrix HÄ is:

�21�

Eqn (21) shows that the block-diagonalised equilibrium matrix HÄ consists of a number of independent
submatrix blocks ÄH

�m�i
:

�22�

Each of the equilibrium submatrix blocks ÄH
�m�i

operates on symmetry-adapted load and bar-force

vectors Äp �m�i and Äf
�m�i

in the corresponding symmetry subspaces V�m�ip and V
�m�i
f . Each submatrix block

ÄH
�m�i

can be solved separately to give the induced bar-force vectors in equilibrium with the applied load
vectors. The original full problem Hf=p, de®ned by the original coordinate systems of Figs. 2 and 3,
has been decomposed into four independent subproblems which consider the relationship between load
and bar-force vectors that have a particular type of symmetry:

ÄH
�m�iÄf �

m�i � Äp �m�i �23�
Rather than block-diagonalising the entire equilibrium matrix, the equilibrium blocks ÄH

�m�i
in the

independent subproblems can be calculated separately, and are given by:

ÄH
�m�i � V

�m�iT
p HV

�m�i
f �24�
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Indeed, it is possible to go further and use sub-structuring techniques to generate the equilibrium
blocks ÄH

�m�i
directly from the equilibrium matrix of a repeating symmetry substructure. A simple sub-

structuring technique, based on work done by Healey and Treacy (1991), is described in Kangwai
(1997), and Bossavit (1991), develops his method directly from a symmetry sub-structure. Similar
subproblems can also be written for the compatibility and ¯exibility relationships.

Note that, in contrast to a block-diagonalised sti�ness matrix, the equilibrium submatrix blocks ÄH
�m�i

are, in general, not square. Indeed, eqn (21) relies on a de®nition of an empty matrix which may have
rows but no columns, or alternatively columns but no rows. In this example, the submatrix block ÄH

�A2�

has no columns, since the symmetry subspace V
�A2�
f is empty, but has one row since the symmetry

subspace V�A2�
p is 1-dimensional. This de®nition ®ts in well with the further discussion of the equilibrium

submatrix blocks ÄH
�m�i

in the remainder of this paper.
As far as we know, the only other description of an empty matrix is in the user manual for the

MATLAB program (Math Works, 1996) and the de®nition given above is compatible to this. Indeed,
the user manual states `MATLAB 5 provides for matrices where one but not all, of the dimensions is
zero. The basic model for empty matrices is that any operation that is de®ned by m� n matrices, and
that produces a result whose dimension is some function of m and n, should still be allowed when m or
n is zero'.

5. Implications of block-diagonalisation

Using the symmetry of a structure to block-diagonalise equilibrium, compatibility and ¯exibility
matrices provides useful results. This section will show how block-diagonalising the equilibrium matrix
simpli®es ®nding and classifying the states of self-stress and mechanisms in a structure. It will also show
that the analysis of a structure using the Force Method can be reduced to the analysis of the
independent equilibrium, compatibility and ¯exibility submatrix blocks, ÄH

�m�i
, ÄC

�m�i
and ÄR

�m�i
,

respectively.

5.1. Analysis of the block-diagonalised equilibrium matrix

In general, an equilibrium matrix H is an (m� n) matrix of rank r. From the equilibrium matrix H it
is possible to ®nd the states of self-stress and the inextensional mechanisms of a structure (Pellegrino
and Calladine, 1986).

A statically indeterminate structure will have (mÿ r) state of self-stress. States of self-stress exist when
there are bar-force vectors f in equilibrium with zero load vectors p, i.e. the states of self-stress are all
bar-force vectors f which satisfy the following equation:

Hf � 0 �25�
Hence, any states of self-stress present in a structure are given by the nullspace of H.

A kinematically indeterminate structure will have (nÿ r) inextensional mechanisms. Inextensional
mechanisms exist when there are displacement vectors d that are compatible with zero bar elongations,
i.e. the inextensional mechanisms are all displacement vectors d which satisfy the following equation:

Cd � 0 �26�
Hence, any inextensional mechanisms present in a structure are given by the nullspace of C (which
corresponds to the left-nullspace of H=CT).

In Section 4, the load and bar-force vectors p and f are transformed into equivalent vectors Äp and Äf
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de®ned by the symmetry-adapted vector bases Vp and Vf respectively, and hence the equilibrium matrix
H is block-diagonalised into a number of equilibrium submatrix blocks ÄH

�m�i
which are also (m� n)

matrices of rank r. The above analysis for states of self-stress and inextensional mechanisms in the
equilibrium matrix H can be simply carried over to these independent equilibrium submatrix blocks

ÄH
�m�i

.
The four equilibrium submatrix blocks ÄH

�m�i
de®ned in eqn (21) for the example structure in Fig. 1,

are now examined.

5.1.1. State of self-stress in the ®rst equilibrium submatrix block

ÄH
�A1 � � � ÿ 1:7321 1�

The (1 � 2) equilibrium submatrix ÄH
�A1�

, corresponding to the ®rst irreducible matrix representation
G�A1�, is of rank 1, and hence will have a state of self-stress present in the corresponding bar-force vector
symmetry subspace V

�A1�
f . The state of self-stress is a bar-force vector Äf

�A1�
s , in equilibrium with zero load

vectors:

ÄH
�A1 �Äf

�A1 �
s � 0 �27�

and is given by the nullspace of ÄH
�A1�

:

Äf
�A1 �
s �

" ÿ1=2
ÿ ���

3
p
=2

#
�28�

This can be transformed back to the original coordinate system:

f�A1 �
s � V

�A1 �
f

Äf
�A1 �
s �29�

where V�A1�
s is the bar-force vector basis for the symmetry subspace V

�A1�
f , de®ned in eqn (8).

f �A1 �
s �

2666666666664

1=
���
3
p

0

0 1=
���
3
p

1=
���
3
p

0

0 1=
���
3
p

1=
���
3
p

0

0 1=
���
3
p

3777777777775

" ÿ1=2
ÿ ���

3
p
=2

#
�

2666666666664

ÿ1= �����
12
p

ÿ1=2
ÿ1= �����

12
p

ÿ1=2
ÿ1= �����

12
p

ÿ1=2

3777777777775
�30�

This state of self-stress is shown in Fig. 6. The state of self-stress has the full symmetry of the example
structure, i.e. three-fold rotation symmetry about the symmetry axis and re¯ection symmetry in planes a,
b and c. This must obviously be the case, as it originates from the symmetry subspace which
corresponds to these properties.
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5.1.2. Mechanism in the second equilibrium submatrix block

The (1 � 0) equilibrium submatrix ÄH
�A2�

, corresponding to the second irreducible matrix
representation G�A2�, is of rank 0, and hence there will be a load vector in the corresponding load vector
symmetry subspace V�A2�

p which cannot be equilibrated. The mechanism is a displacement vector Äd
�A2�
m ,

which is compatible with zero bar elongations. However, since the bar-force vector symmetry subspace
V
�A2�
f is an empty space, any displacement vector Äd

�A2�
must be a mechanism. This mechanism is given

by the symmetry subspace V�A2�
p and a vector basis V�A2�

p in the original Cartesian coordinate system is
given by eqn (5):

d�A2 �
m �

2666666666664

1=2

1=
�����
12
p

0

ÿ1= ���
3
p

ÿ1=2
1=

�����
12
p

3777777777775
�31�

The mechanism is shown in Fig. 7. The mechanism has only the three-fold rotation symmetry about the
symmetry axis of the example structure, and no re¯ection symmetry.

In general, any (m� 0) empty equilibrium submatrix ÄH
�m�i

which operates on an m-dimensional load
vector symmetry subspace and a corresponding zero-dimensional bar-force vector symmetry subspace,
represents a set of m load vectors which cannot induce any bar-force vectors in the structure, and hence
these m load vectors correspond to m independent internal mechanisms.

Similarly, any (0� n) empty equilibrium submatrix ÄH
�m�i

which operates on a zero-dimensional load
vector symmetry subspace and a corresponding n-dimensional bar-force vector symmetry subspace,
represents a set of n bar-force vectors which are not in equilibrium with any applied load vectors and
hence are n independent states of self-stress.

Fig. 6. State of self-stress in the bar-force symmetry subspace V
�A1�
f .
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5.1.3. Third and fourth equilibrium submatrix blocks
The third and fourth (2 � 2) equilibrium submatrices ÄH

�E �1 and ÄH
�E �2 , corresponding to the third

irreducible matrix representation G�E �, are both of full rank and hence do not contain any further states
of self-stress or inextensional mechanisms.

5.2. Simpli®cation of the Force Method

The Force Method can be used to completely analyse the example structure to give the bar forces, bar
elongations and displacements resulting from an applied loading, see, e.g. Livesley (1975). For a block-
diagonalised equilibrium matrix ÄH , the analysis can be carried out on the independent equilibrium
submatrix blocks ÄH

�m�i
.

For example, consider the example structure subject to the following loading using the original
Cartesian coordinate system shown in Fig. 2:

p�A1 � �

2666666666664

1=
�����
12
p

ÿ1=2
ÿ1= ���

3
p

0

1=
�����
12
p

1=2

3777777777775
�32�

which can be transformed into:

Äp �A1 � � 1 �33�
where Äp �A1� is a load vector described by the symmetry-adapted vector basis V�A1�

p of the ®rst symmetry
subspace V�A1�

p . What is the induced bar-force vector Äf �A1�?

Fig. 7. Mechanism in the displacement symmetry subspace V�A2�
p .
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In Section 5.1.1 it was shown that the ®rst equilibrium submatrix ÄH
�A1�

contains a state of self-stress,
and hence the induced bar-force vector Äf

�A1�
is given by:

Äf
�A1 � � Äf

�A1 �
o � Äf

�A1 �
s x �34�

where Äf �A1�
o is the bar-force vector in equilibrium with the applied load vector, Äf

�A1�
s is the state of self-

stress, x is the unknown magnitude of the self-stress.
The state of self-stress Äf �A1�

s was found in Section 5.1.1. The bar-force vector Äf
�A1�
o is a particular

solution of the equilibrium equation:

ÄH
�A1 �Äf

�A1 �
o � Äp �A1 � �35�

for which a possible choice is:

Äf
�A1 �
o �

�
0
1

�
�36�

To ®nd the magnitude of the state of self-stress x, the following equation ensures that compatibility is
satis®ed (Livesley, 1975):

Äf
�A1 �T
s

ÄR
�A1 �Äf

�A1 �
s x � ÿÄf

�A1 �T
s

ÄR
�A1 �Äf

�A1 �
o �37�

where ÄR
�A1�

is the matrix of member ¯exibilities for the symmetry subspace V
�A1�
f . The matrix of member

¯exibilities R for the original internal vector space Vf is:

R � l

AE

2666666666664

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3777777777775
�38�

where l is the bar length, A is the cross-sectional area of the bar, E is the Young's modulus.
The matrix of member ¯exibilities for the symmetry subspace V

�A1�
f is:

ÄR
�A1 � � V

�A1 �T
f RV

�A1 �
f �39�

ÄR
�A1 � � l

AE

"
1 0

0 1

35 �40�

Hence, solving eqn (37), the magnitude of the state of self-stress is:

x �
���
3
p
=2 �41�

Substituting eqns (36), (28) and (41) into eqn (34), the induced bar-force vector fÄ (A1) due to the applied
load is:
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Äf
�A1 � �

"
0

1

#
�
" ÿ1=2
ÿ ���

3
p
=2

# ���
3
p
=2 �

"
ÿ ����������

3=16
p

1=4

#
�42�

The induced bar-force vector f �A1� in the original bar-force coordinate system of Fig. 3 is:

f �A1 � � V
�A1 �
f

Äf
�A1 � �43�

f �A1 � �

2666666666664

1=
���
3
p

0

0 1=
���
3
p

1=
���
3
p

0

0 1=
���
3
p

1=
���
3
p

0

0 1=
���
3
p

3777777777775

"
ÿ ����������

3=16
p

1=4

#
�

2666666666664

ÿ1=4
1=

�����
48
p

ÿ1=4
1=

�����
48
p

ÿ1=4
1=

�����
48
p

3777777777775
�44�

The induced bar-elongation vector Äe �A1� can now be found using the stress±strain relationship of eqn (3):

Äe �A1 � � ÄR
�A1 �Äf

�A1 � �45�

Äe �A1 � � l

AE

" ���
3
p

0

0
���
3
p

# "
ÿ ����������

3=16
p

1=4

#
� l

AE

" ÿ3=4����������
3=16
p

#
�46�

The induced bar-elongation vector e�A1� in the original bar-elongation coordinate system of Fig. 3 is:

e�A1 � � F
�A1 �
f

Äe �A1 � �47�

e�A1 � �

2666666666664

1=
���
3
p

0

0 1=
���
3
p

1=
���
3
p

0

0 1=
���
3
p

1=
���
3
p

0

0 1=
���
3
p

3777777777775
l

AE

" ÿ3=4����������
3=16
p

#
� l

AE

2666666666664

ÿ ����������
3=16
p

1=4

ÿ ����������
3=16
p

1=4

ÿ ����������
3=16
p

1=4

3777777777775
�48�

The induced displacement vector Äd
�A1�

is given by the kinematic compatibility relationship of eqn (2):

ÄH
�A1 �T Äd

�A1 � � Äe �A1 � �49�
for which the solution is:

Äd
�A1 � �

����
3l
p

4AE
�50�

The induced displacement vector d�A1� in the original coordinate system of Fig. 2 is:
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d�A1 � � V�A1 �
p

Äd
�A1 � �51�

d�A1 � �

2666666666664

1=
�����
12
p

ÿ1=2
ÿ1= ���

3
p

0

1=
�����
12
p

1=2

3777777777775
����
3l
p

4AE
� l

AE

2666666666664

1=8

ÿ ����������
3=64
p

ÿ1=4
0

1=8����������
3=64
p

3777777777775
�52�

Eqn (64) gives the displacement vector d�A1� compatible with the bar-elongation vector e�A1�, which is
induced by the load vector p�A1�. However a general solution displacement vector d may include some
displacement component d�A2�

m of unknown magnitude y from the second symmetry subspace V�A2�
p , and

therefore the general solution displacement vector d is given by:

d � d�A1 � � yd�A2 �
m �53�

where d�A1� is the displacement vector compatible with the bar-elongation vector, d�A2�
m is the

inextensional mechanism, y is the magnitude of the inextensional mechanism.

6. Example: states of self-stress and mechanisms of a Geiger dome

The aim of this section is to show that the methods described in this paper can be applied to the
analysis of more complex structures. In particular, it looks at the states of self-stress and mechanisms of
a Geiger dome.

A Geiger dome is a class of cable-and-strut prestressed tensegrity dome, which have been proposed by
D.H. Geiger. Larger domes of this type have been built, an example being the Sun Coast Dome in
Florida, which has a diameter of 210 m. There have been a number of studies of the structural
behaviour of a Geiger dome under general loading conditions. For example, Pellegrino (1992) has
investigated how the single state of self-stress sti�ens all the inextensional mechanisms within a
simpli®ed version of a Geiger dome with only four-fold rotation and re¯ection symmetry, shown in Fig.
8. This example uses the simpli®ed Geiger dome to show how the methods described in this paper
considerably simplify ®nding and classifying states of self-stress and mechanisms in a structure. Of
course similar calculations could be carried out for more complex Geiger domes, but for clarity only the
simpli®ed Geiger dome is analysed here. In the original work by Pellegrino, ®nding `simple' mechanisms
was not an easy task, whereas using the methods in this paper a sensible symmetry classi®cation is
automatically found.

The Geiger dome is transformed into an equivalent structure by the following set of symmetry
operations: the identity, symmetry operation E; rotation by 90, 180 or 2708 about the vertical axis
through the origin O, symmetry operations C4, C

2
4 or C3

4; re¯ection in the vertical planes x, y, m or n,
symmetry operations sx, sy, sm or sn. These eight symmetry operations constitute the symmetry group
C4v. The irreducible matrix representations G�m� for this symmetry group are shown in Table 3.

Using the method described in Section 3, both the load and bar-force vector spaces, Vp and Vf , can
each be decomposed into six symmetry subspaces, since there are four 1-D and one 2-D irreducible
matrix representations for the symmetry group C4v. Using these symmetry-adapted coordinate systems,
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the block-diagonalised equilibrium matrix has the following form:

�54�

Fig. 8. Simpli®ed Geiger dome, with C4v symmetry. (a) 3-D view; (b) plan view, showing planes of symmetry.
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Due to the size of the matrices, ÄH , Vp and Vf are not shown in full. However, the next two sections will
examine the states of self-stress and mechanisms found in the di�erent submatrix blocks ÄH

�m�i
.

6.1. States of self-stress in the Geiger dome

The ®rst equilibrium submatrix block ÄH
�A1�

is an (8 � 9) matrix of rank 8. Hence, a single state of
self-stress exists in the bar-force symmetry subspace V

�A1�
f and is shown in Fig. 9.

The bar-force vector symmetry subspace V
�A1�
f has the fully symmetry of the Geiger dome, i.e. bar-

force vectors in this symmetry subspace are left unchanged by all the operations of the symmetry group
C4v.

The remaining ®ve bar-force vector symmetry subspace of the Geiger dome do not contain any states
of self-stress.

Table 3

Irreducible representations of symmetry group C4v

C4v E C4 C2
4 C3

4 sx sy sm sn

G�A1� 1 1 1 1 1 1 1 1

G�A2� 1 1 1 1 ÿ1 ÿ1 ÿ1 ÿ1
G�B1� 1 ÿ1 1 ÿ1 1 1 ÿ1 ÿ1
G�B2� 1 ÿ1 1 ÿ1 ÿ1 ÿ1 1 1

G�E � 1 0
0 1

� �
0 1
ÿ1 0

� � ÿ1 0
0 ÿ1

� �
0 ÿ1
1 0

� �
1 0
0 ÿ1

� � ÿ1 0
0 1

� �
0 1
1 0

� �
0 ÿ1
ÿ1 0

� �

Fig. 9. Bar-forces of the state of self-stress in the bar-force symmetry subspace V
�A1�
f . (a) Plan view, [1, 1] indicates there is a unit

magnitude tensile force in both the upper and lower inner rings. (b) Elevation of one radial truss sectionÐall four of these have

identical bar-forces.
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Fig. 10. Four mechanisms in the displacement symmetry subspace V�A2�
p , with C4 symmetry properties.

Fig. 11. Mechanism in the displacement symmetry subspace V�B1�
p , with C2v symmetry properties (re¯ection in planes x and y ).
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Fig. 12. Two mechanisms in the displacement symmetry subspace V�B2�
p , with C2v symmetry properties (re¯ection in planes m and

n ).

Fig. 13. Three mechanisms in the displacement symmetry subspace V�E �1p , with Cs symmetry properties (re¯ection in plane x ).
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6.2. Mechanisms in the Geiger dome

The full equilibrium matrix H is a (48 � 36) matrix of rank 35, hence there exist 13 inextensional
mechanisms in the Geiger dome (Pellegrino, 1992).

The second equilibrium submatrix block ÄH
�A2�

, which operates on the symmetry subspaces V�A2�
p and

V
�A2�
f , is a (4 � 0) matrix of rank 0. The bar-force symmetry subspace V

�A2�
f is, therefore, an empty

subspace and hence the four displacement vectors in the symmetry subspace V�A2�
p must be inextensional

mechanisms. These four mechanisms are given by the four basis vectors in V�A2�
p and are shown in

Fig. 10. We can see that each of these mechanisms has the full rotation symmetry of the Geiger dome
but none of the re¯ection symmetry, i.e. C4 symmetry properties.

The third equilibrium submatrix block ÄH
�B1�

is a (4 � 3) matrix of rank 3. Hence, an inextensional
mechanism exists in the symmetry subspace V�B1�

p , and is shown in Fig. 11. This mechanism has only C2v

symmetry properties, with re¯ection symmetry in the x- and y-planes.
The fourth equilibrium submatrix block ÄH

�B2�
is an (8 � 6) matrix of rank 6. Hence, two inextensional

mechanisms exist in the symmetry subspace V�B2�
p , and are shown in Fig. 12. They also have only C2v

symmetry properties, but now with re¯ection symmetry in the m and n planes.

The ®fth equilibrium submatrix block ÄH
�E �1 is a (12 � 9) matrix of rank 9. Hence, three inextensional

mechanisms exist in the symmetry subspace V�E �1p and are shown in Fig. 13. These mechanisms have
only re¯ection symmetry in the x-plane, i.e. S2 symmetry properties.

The sixth equilibrium submatrix block ÄH
�E �2 is a (12 � 9) matrix of rank 9. Hence, three inextensional

Fig. 14. Three mechanisms in the displacement symmetry subspace V�E �2p , with Cs symmetry properties (re¯ection in plane y ).
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mechanisms exist in the symmetry subspace V�E �2p and are shown in Fig. 14. These mechanisms have
only re¯ection symmetry in the y-plane, i.e. S2 symmetry properties.

7. Conclusions

By de®ning both external and internal symmetry-adapted coordinate systems, we have shown that the
equilibrium matrix of a symmetric structure can be block-diagonalised, and that this can give useful
insight into the structural response of such a system, as well as simplifying computations.
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